

Function

Exercise

- 1. If $A = \{1, 2, 3, 4\}$, then which of the following functions is from A to itself?
 - (a) $f_1 = \{(x, y) : y = x + 1\}$
 - (b) $f_2 = \{(x, y) : x + y > 4\}$
 - (c) $f_3 = \{(x, y) : y < x\}$
 - (d) $f_4 = \{(x, y) : x + y = 5\}$
- 2. Set A has 3 elements and set B has 4 elements. The number of injections that can be defined from A to B is (a) 144 (b) 12
 - (d) 64 (c) 24

3. If
$$f(x) = \frac{3x+2}{5x-3}$$
, then
(a) $f^{-1}(x) = f(x)$ (b) $f^{-1}(x) = -f(x)$
(c) $fof(x) = -x$ (d) $f^{-1}(x) = \frac{-1}{19}f(x)$

- 4. Let $f(x) = \frac{1}{\sqrt{2x-1}} \sqrt{1-x^2}$, then Dom (f) is equal to
 - (a) $]\frac{1}{2},1]$ (b) [−1, ∞[(c) [1,∞[(d) None of these
- The domain of the function $f(x) = \sqrt{\log(2x x^2)}$ is 5. (a)]0, 2[(b) [0, 2]
 - (c)] $-\infty$, 1] (d) None of these
- 6. Let C and R denote the sets of all complex numbers and all real numbers respectively.

Let $f: C \rightarrow R: f(z) = |z|$. Then, f is

- (a) one-one, into
- (b) one-one, onto
- (c) many-one, onto
- (d) many-one, into
- 7. Let $A = \{x : -1 \le x \le 1, x \in I\}$ and $f : A \rightarrow A$ such that f(x) = x | x |, then f is

- (a) a bijection
- (b) injective but not surjective
- (c) surjective but not injective
- (d) neither injective nor surjective

8.
$$f\left(x+\frac{1}{x}\right) = x^2 + \frac{1}{x^2}, x \neq 0$$
, then $f(x) =$
(a) x^2 (b) $x^2 - 1$
(c) $x^2 - 2$ (d) None of these

- Let $A = \{0, 1\}$ and N the set of all natural numbers. 9. Then the mapping $f: \mathbb{N} \to \mathbb{A}$ defined by f(2n-1) = 0, $f(2n) = 1 \forall n \in \mathbb{N}$ is
 - (a) one-one onto
 - (b) one-one into
 - (c) many one onto
 - (d) many one into

10. Given
$$f(x) = \log\left(\frac{1+x}{1-x}\right)$$

$$g(x) = \frac{3x + x^3}{1 + 3x^2}$$
, then $fog(x)$ equals to
(a) $-f(x)$ (b) $3f(x)$
(c) $[f(x)]^3$ (d) None of

$$f(x)$$
³ (d) None of these

11. Let
$$f: \mathbb{R} \to \mathbb{R}$$
, $g: \mathbb{R} \to \mathbb{R}$ be two functions given by $f(x) = 2x - 3$, $g(x) = x^3 + 5$. Then $(fog)^{-1}(x)$ is equal to

(a)
$$\left(\frac{x+7}{2}\right)^{1/3}$$
 (b) $\left(x-\frac{7}{2}\right)^{1/3}$
(c) $\left(\frac{x-2}{7}\right)^{1/3}$ (d) $\left(\frac{x-7}{2}\right)^{1/3}$

- 12. Which one of the following functions $f : \mathbb{R} \to \mathbb{R}$ is injective ?
 - (a) $f(x) = |x| \forall x \in \mathbb{R}$ (b) $f(x) = x^2 \forall x \in \mathbb{R}$ (c) $f(x) = 11, \forall x \in \mathbb{R}$
 - (d) $f(x) = -x \forall x \in \mathbb{R}$

10

- 13. The function $f: \mathbb{N} \to \mathbb{N}$ given by $f(n) = n (-1)^n$ is (a) one-one and onto (b) many-one and onto (c) one-one and into (d) many-one and into 14. Let $f(x) = \frac{1}{\log_{10}(1-x)} + \sqrt{x+2}$. Then, Dom(f) = ?(a) $(] - \infty, 1[-\{0\}) \cap ([-2, \infty[)$ (b) $[-2, \infty [-\{0\}]$ (c) $[-2, 1] - \{0\}$ (d) None of the above 15. Let $f(x) = \frac{\sin^{-1} x}{r}$. Then, Dom (f) = ?(b) $]-1, 1[-\{0\}]$ (a)]-1, 1[(c) $[-1, 1] - \{0\}$ (d) None of these 16. If $F(x) = \frac{x-1}{x+1}$, then F(2x) is (a) $\frac{F(x)+1}{F(x)+3}$ (b) $\frac{3F(x)+1}{F(x)+3}$ (c) $\frac{F(x)+3}{F(x)+1}$ (d) $\frac{F(x)+3}{3F(x)+1}$ 17. If $f(x) = \cos(\log_e x)$, then $f(x) f(y) - \frac{1}{2} [f(x / y) + f(xy)]$ is equal to (b) $\frac{1}{2}f(x).f(y)$ (a) 0 (d) None of these (c) f(x + y)18. Let $g(x) = \sin x + \cos x$. Then Range (g) is equal to (a) $\left| -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right|$ (b) $\left| -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right|$ (d)] $-\sqrt{2},\sqrt{2}$ [(c) $[-\sqrt{2},\sqrt{2}]$ 19. Which of the following function from Z to itself is bijection? (a) $f(x) = x^3$ (b) f(x) = x + 2(d) $f(x) = x^2 + x$ (c) f(x) = 2x + 120. Let $f: \mathbb{N} \to \mathbb{N}$ is defined by $f(n) = n^2 + n + 1$. Then f is (b) one-one, into (a) one-one, onto (c) many-one onto (d) many-one, into
- 21. Let A and B be two sets such that A be the empty set and B has *m* elements, then the total number of mappings from A to B is
 - (a) *m* (b) 0
 - (c) 1 (d) None of these
- 22. Let A = { $x \in \mathbb{R} : x \le 1$ } and $f : \mathbb{A} \to \mathbb{A}$ be defined as f(x) = x (2-x), then $f^{-1}(x)$ is

(a)
$$1+\sqrt{1-x}$$
 (b) $1-\sqrt{1-x}$
(c) $\sqrt{1-x}$ (d) $1\pm\sqrt{1-x}$

23. If
$$f(x_1) - f(x_2) = f\left(\frac{x_1 - x_2}{1 - x_1 x_2}\right)$$
 for $x_1, x_2 \in (-1, 1)$,
then what is $f(x)$ equal to? [NDA-I 2016]

NDA-Pioneer : Mathematics

(d) one-one and onto

	ANSWERS																		
1.	(d)	2.	(c)	3.	(a)	4.	(a)	5.	(d)	6.	(d)	7.	(a)	8.	(c)	9.	(c)	10.	(b)
11.	(d)	12.	(d)	13.	(a)	14.	(c)	15.	(c)	16.	(b)	17.	(a)	18.	(c)	19.	(b)	20.	(b)
21.	(c)	22.	(b)	23.	(a)	24.	(b)	25.	(a)	26.	(a)	27.	(b)	28.	(a)	29.	(a)	30.	(d)

Explanations

1. (d) $A = \{1, 2, 3, 4\}$
$$\begin{split} f_1 &= \{(1,\,2),\,(2,\,3)\,(3,\,4),\,(4,\,5)\} \\ f_2 &= \{(1,\,4),\,(2,\,3),\,(2,\,4),\,(3,\,3),\,(3,\,4),\, \end{split}$$
(4, 4), (4, 1), (4, 2), (4, 3) $f_3 = \{(2, 1) (3, 1) (3, 2) \dots\}$ and $f_4 = \{(1, 4) (2, 3) (3, 2) (4, 1)\}$ Obviously f_4 is a function from A to itself and f_1, f_2 , f_3 are not the function from A to itself. 2. (c) n(A) = 3 and n(B) = 4Number of injections from A to $B = {}^{4}P_{3} = 24$ (a) Let f(x) = y, then 3. $\frac{3x+2}{5x-3} = y \Longrightarrow x = \frac{3y+2}{5y-3}$ $\therefore f^{-1}(y) = \frac{3y+2}{5y-3}$ or $f^{-1}(x) = \frac{3x+2}{5x-3} = f(x) \forall x$ 4. (a) $f(x) = \frac{1}{\sqrt{2x-1}} - \sqrt{1-x^2}$ Let f(x) = g(x) - h(x), where $g(x) = \frac{1}{\sqrt{2x-1}}$ and $h(x) = \sqrt{1 - x^2}$ g(x) is defined when 2x - 1 > 0, i.e., $x > \frac{1}{2}$ $\therefore \operatorname{dom}(g) = \left[\frac{1}{2}, \infty\right]$ h(x) is defined when $1 - x^2 \ge 0$ $\Rightarrow x^2 \leq 1$ $\Rightarrow -1 \le x \le 1 \Rightarrow \text{Dom}(h) = [-1, 1]$ \therefore Domain of the given function is] $\frac{1}{2}$, 1]. (d) Clearly f(x) is defined when $\log (2x - x^2) \ge 0$ 5. i.e., when $(2x - x^2) \ge 1$ i.e., when $1 + x^2 - 2x \le 0$

 $(1-x)^2 \leq 0$

This happen only when 1 - x = 0i.e., x = 1 $\therefore \text{ dom}(f) = \{1\}$ 6. (d) (3 + 4i) and (3 - 4i) are two different complex numbers having the same modulus, i.e., f(3+4i) = f(3-4i) so, two different elements have the same image. \therefore f is many one. $-1 \in \mathbb{R}$ have no pre-image in C. Hence, f is many one into. 7. (a) $A = \{x : -1 \le x \le 1, x \in I\}$ then $A = \{-1, 0, 1\}$ $f(x) = x \mid x \mid$ f(-1) = -1f(0) = 0f(1) = 1 \Rightarrow *f* is one one onto, i.e., *f* is bijection. 8. (c) $f\left(x+\frac{1}{r}\right) = x^2 + \frac{1}{r^2}$...(1) Let $x + \frac{1}{x} = z$ Making square on both sides $\left(x+\frac{1}{x}\right)^2 = z^2 \Longrightarrow x^2 + \frac{1}{x^2} = z^2 - 2$ Put in (1) $f(z) = z^2 - 2$ $\Rightarrow f(x) = x^2 - 2$ 9. (c) $f: \mathbb{N} \to \mathbb{A}$ where $\mathbb{A} = \{0, 1\}$ $\therefore f(2n-1) = 0$ and $f(2n) = 1 \forall n \in \mathbb{N}$ i.e., All odd numbers are mapped to 0 and all even numbers are mapped to 1, so function is many one onto. 10. (b) $f(x) = \log\left(\frac{1+x}{1-x}\right)$ and $g(x) = \frac{3x+x^3}{1+2x^2}$ fog $(x) = f\{g(x)\}$

$$= f\left\{\frac{3x+x^{3}}{1+3x^{2}}\right\} = \log\left\{\frac{1+\frac{3x+x^{3}}{1+3x^{2}}}{1-\frac{3x+x^{3}}{1+3x^{2}}}\right\}$$
$$= \log\left\{\frac{1+3x+3x^{2}+x^{3}}{1-3x+3x^{2}-x^{3}}\right\} = \log\left(\frac{1+x}{1-x}\right)^{3}$$
$$= 3\log\left(\frac{1+x}{1-x}\right) = 3f(x)$$
11. (d) $f(x) = 2x - 3$, $g(x) = x^{3} + 5$
 $fog(x) = f\{g(x)\} = f\{x^{3} + 5\}$
 $fog(x) = 2(x^{3} + 5) - 3 = 2x^{3} + 7$
Let $fog(x) = y$
 $\Rightarrow y = 2x^{3} + 7$
or $x = \left(\frac{y-7}{2}\right)^{1/3}$
So, $(fog)^{-1}(x) = \left(\frac{x-7}{2}\right)^{1/3}$
12. (d) An injective function means one-one
In option (d),

In option (d), f(x) = -xFor every value of x, we get a different value of f.

Hence, it is injective.

13. (a) $f: \mathbb{N} \to \mathbb{N}$

s.t.
$$f(n) = n - (-1)^n$$

 $f(1) = 1 + 1 = 2, f(2) = 2 - 1 = 1$
 $f(3) = 3 + 1 = 4, f(4) = 4 - 1 = 3$
i.e., $f(n) = \begin{cases} n+1; & n \text{ is odd} \\ n-1; & n \text{ is even} \end{cases}$

Clearly, function is one-one onto.

14. (c) Let f(x) = g(x) + h(x), where

$$g(x) = \frac{1}{\log_{10}(x-1)}$$

and $h(x) = \sqrt{x+2}$
 $g(x)$ is defined only when $\log_{10}(1-x) \neq 0$
and $(1-x) > 0$
i.e., when $x \neq 0$ and $x < 1$
Dom $(g) =] -\infty$, $1[-\{0\}$
 $h(x)$ is defined only when $x + 2 \ge 0$
i.e., when $x \ge -2$
 \therefore dom $(h) = [-2, \infty[$
Dom $(f) =$ Dom $(g) \cap$ Dom (h)
 $= (]-\infty, 1[-\{0\} \cap ([-2, \infty[)] = [-2, 1[-\{0\}$
15. (c) $\frac{\sin^{-1}x}{x}$ is defined only when $x \neq 0$ and $x \in [-1, 1]$
 \therefore dom $(f) = [-1, 1] - \{0\}$

NDA-Pioneer : Mathematics

16. (b)
$$\frac{F(x)}{1} = \frac{x-1}{x+1} \Rightarrow \frac{F(x)+1}{F(x)-1} = \frac{2x}{-2}$$

{Applying Componendo Dividendo Theorem}

$$\therefore F(2x) = \frac{2x-1}{2x+1} = \frac{2\left[\frac{F(x)+1}{1-F(x)}\right] - 1}{2\left[\frac{F(x)+1}{1-F(x)}\right] + 1}$$
$$= \frac{3F(x)+1}{F(x)+3}$$

(a)
$$f(x) = \cos(\log_e x)$$

 $f(x) \cdot f(y) - \frac{1}{2} \left[f\left(\frac{x}{y}\right) + f(xy) \right]$

$$= \cos(\log x) \cos(\log y)$$

17.

$$-\frac{1}{2}\left[\cos\left(\log\frac{x}{y}\right) + \cos(\log xy)\right]$$

 $= \cos\left(\log x\right) \cos\left(\log y\right)$

= 0

$$-\frac{1}{2} \left[\cos \left(\log x - \log y \right) + \cos \left(\log x + \log y \right) \right]$$
$$= \cos \left(\log x \right) \cos \left(\log y \right)$$

$$-\frac{1}{2} \left[2 \cos(\log x) \cos(\log y) \right]$$

18. (c)
$$g(x) = \cos x + \sin x = \sqrt{2} \left[\frac{1}{\sqrt{2}} \cos x + \frac{1}{\sqrt{2}} \sin x \right]$$

$$= \sqrt{2} \sin \left(x + \frac{\pi}{4} \right)$$
$$\Rightarrow -\sqrt{2} \le g(x) \le \sqrt{2} \left\{ \because -1 \le \sin \left(\frac{\pi}{4} \right) \le 1 \right\}$$

Hence, Range = $\left[-\sqrt{2}, \sqrt{2}\right]$

19. (b) The function f(x) = x³ is not a surjection from Z to itself because 2 ∈ Z does not have any pre image in Z.
The function f(x) = x + 2 is a bijection from Z to function from Z

The function f(x) = x + 2 is a bijection from Z to itself.

The function f(x) = 2x + 1 is not a surjection from Z to itself and the function $f(x) = x^2 + x$ is not an injection from Z to itself.

20. (b)
$$f: N \to N: f(n) = n^2 + n + 1$$

 $f(n_1) = f(n_2)$
 $\Rightarrow n_1^2 + n_1 + 1 = n_2^2 + n_2 + 1$
 $\Rightarrow (n_1 - n_2) (n_1 + n_2 + 1) = 0$
 $\Rightarrow (n_1 - n_2) = 0 \quad (\because n_1 + n_2 + 1 \neq 0)$
 $\Rightarrow n_1 = n_2$
 $\Rightarrow f$ is one-one.

Function

Let $n^2 + n + 1 = 1$ for some $n \in \mathbb{N}$ Then, n(n+1) = 0 $\Rightarrow n = -1 \notin \mathbb{N}$ \Rightarrow 1 is not the image of any natural number \Rightarrow *f* is into. 21. (c) Given |A| = 0 and |B| = m $f: A \rightarrow B$ Total number of mappings from A to $B = m^{\circ} = 1$ 22. (b) Let f(x) = y $\Rightarrow y = 2x - x^2$ or $x^2 - 2x + y = 0$ $\Rightarrow x = \frac{2 \pm \sqrt{4 - 4y}}{2}$ $f^{-1}(y) = x = 1 \pm \sqrt{1-y}$ $\therefore \mathbf{A} = \{ x \in \mathbf{R} : x \le 1 \}$ So, $f^{-1}(x) = 1 - \sqrt{1 - x}$ 23. (a) Let $f(x) = \log\left(\frac{1-x}{1+x}\right)$ $f\left(\frac{x_1 - x_2}{1 - x_1 x_2}\right) = \log\left\{\frac{1 - \frac{x_1 - x_2}{1 - x_1 x_2}}{1 + \frac{x_1 - x_2}{1 - x_1 x_2}}\right\}$ $= \log \left\{ \frac{1 - x_1 x_2 - x_1 + x_2}{1 - x_1 x_2 + x_1 - x_2} \right\}$ $= \log \left\{ \frac{(1-x_1)(1+x_2)}{(1+x_1)(1-x_2)} \right\}$ $= \log \left\{ \frac{1-x_1}{1+x_1} \right\} + \log \left\{ \frac{1+x_2}{1-x_2} \right\}$ $= \log \left\{ \frac{1-x_1}{1+x_2} \right\} - \log \left\{ \frac{1-x_2}{1+x_2} \right\}$ $= f(x_1) - f(x_2)$ 24. (b) f(x) = [x] and g(x) = |x| $(fof)\left(\frac{-9}{5}\right) + (gog)(-2)$ $= f\left\{f\left(-\frac{9}{5}\right)\right\} + g\{g(-2)\}$

$$= f\left\{\left[-\frac{9}{5}\right]\right\} + g\left\{|-2|\right\}$$

$$= f(-2) + g(2)$$

$$= [-2] + |2| = -2 + 2 = 0$$
25. (a) $f(x) = \frac{1}{\sqrt{|x| - x}}$
For domain $|x| - x > 0$

$$\Rightarrow |x| > x$$
This is true for all negative values of x.
Hence, domain $= (-\infty, 0)$
26. (a) Let $f(x) = y = \frac{x^2}{1 + x^2}$

$$\Rightarrow x^2 = \frac{y}{1 - y} \Rightarrow x = \sqrt{\frac{y}{1 - y}} = f^{-1}(y)$$
For range $\frac{y}{1 - y} \ge 0 \Rightarrow \frac{y}{y - 1} \le 0$

$$\Rightarrow 0 \le y < 1$$
Hence, range $= [0 \ 1)$
27. (b) $f(x) = \frac{x}{x - 1}$

$$\frac{f(a)}{f(a + 1)} = \frac{\frac{a}{a - 1}}{\frac{a + 1}{a + 1 - 1}} = \frac{a^2}{a^2 - 1} = f(a^2)$$
28. (a) $f: X \to Y$ s.t. $f(x) = \cos x$ is one-one onto.
 $\cos x$ is one-one for $0 \le x \le \pi$
and onto when $-1 \le \cos x \le 1$
So, $X = [0 \pi]$ and $Y = [-1 1]$
29. (a) $f: [-6 6] \to \mathbb{R}$ s.t. $f(x) = x^2 - 3$
 $\because f(1) = (f - 1)$
so, $(fofof)(-1) = (fofof)(1)$
Hence, only Statement 1 is correct.
30. (d) $f(x) - g(x) = \begin{cases} x, x \text{ is rational.} \\ -x, x \text{ is irrational.} \\ \Rightarrow f - g \text{ is one-one, onto.} \end{cases}$