CHAPTER

 Function

Exercise

1. If $A=\{1,2,3,4\}$, then which of the following functions is from A to itself?
(a) $\left.f_{1}=\{(x, y): y=x+1)\right\}$
(b) $f_{2}=\{(x, y): x+y>4\}$
(c) $f_{3}=\{(x, y): y<x\}$
(d) $f_{4}=\{(x, y): x+y=5\}$
2. Set A has 3 elements and set B has 4 elements. The number of injections that can be defined from A to B is
(a) 144
(b) 12
(c) 24
(d) 64
3. If $f(x)=\frac{3 x+2}{5 x-3}$, then
(a) $f^{-1}(x)=f(x)$
(b) $f^{-1}(x)=-f(x)$
(c) $f \circ f(x)=-x$
(d) $f^{-1}(x)=\frac{-1}{19} f(x)$
4. Let $f(x)=\frac{1}{\sqrt{2 x-1}}-\sqrt{1-x^{2}}$, then $\operatorname{Dom}(f)$ is equal to
(a) $\left.] \frac{1}{2}, 1\right]$
(b) $[-1, \infty[$
(c) $[1, \infty[$
(d) None of these
5. The domain of the function $f(x)=\sqrt{\log \left(2 x-x^{2}\right)}$ is
(a) $] 0,2[$
(b) $[0,2]$
(c) $]-\infty, 1]$
(d) None of these
6. Let C and R denote the sets of all complex numbers and all real numbers respectively.
Let $f: \mathrm{C} \rightarrow \mathrm{R}: f(z)=|z|$. Then, f is
(a) one-one, into
(b) one-one, onto
(c) many-one, onto
(d) many-one, into
7. Let $\mathrm{A}=\{x:-1 \leq x \leq 1, x \in I\}$ and $f: \mathrm{A} \rightarrow \mathrm{A}$ such that $f(x)=x|x|$, then f is
(a) a bijection
(b) injective but not surjective
(c) surjective but not injective
(d) neither injective nor surjective
8. $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}, x \neq 0$, then $f(x)=$
(a) x^{2}
(b) $x^{2}-1$
(c) $x^{2}-2$
(d) None of these
9. Let $\mathrm{A}=\{0,1\}$ and N the set of all natural numbers.

Then the mapping $f: \mathrm{N} \rightarrow$ A defined by $f(2 n-1)=0$, $f(2 n)=1 \forall n \in \mathrm{~N}$ is
(a) one-one onto
(b) one-one into
(c) many one onto
(d) many one into
10. Given $f(x)=\log \left(\frac{1+x}{1-x}\right)$ $g(x)=\frac{3 x+x^{3}}{1+3 x^{2}}$, then $f \circ g(x)$ equals to
(a) $-f(x)$
(b) $3 f(x)$
(c) $[f(x)]^{3}$
(d) None of these
11. Let $f: \mathrm{R} \rightarrow \mathrm{R}, g: \mathrm{R} \rightarrow \mathrm{R}$ be two functions given by $f(x)=2 x-3, g(x)=x^{3}+5$. Then $(f \circ g)^{-1}(x)$ is equal to
(a) $\left(\frac{x+7}{2}\right)^{1 / 3}$
(b) $\left(x-\frac{7}{2}\right)^{1 / 3}$
(c) $\left(\frac{x-2}{7}\right)^{1 / 3}$
(d) $\left(\frac{x-7}{2}\right)^{1 / 3}$
12. Which one of the following functions $f: \mathrm{R} \rightarrow \mathrm{R}$ is injective?
(a) $f(x)=|x| \forall x \in \mathrm{R}$
(b) $f(x)=x^{2} \forall x \in \mathrm{R}$
(c) $f(x)=11, \forall x \in \mathrm{R}$
(d) $f(x)=-x \forall x \in \mathrm{R}$
13. The function $f: \mathrm{N} \rightarrow \mathrm{N}$ given by $f(n)=n-(-1)^{n}$ is
(a) one-one and onto
(b) many-one and onto
(c) one-one and into
(d) many-one and into
14. Let $f(x)=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2}$. Then,
$\operatorname{Dom}(f)=$?
(a) (]$-\infty, 1[-\{0\}) \cap([-2, \infty[)$
(b) $[-2, \infty[-\{0\}$
(c) $[-2,1[-\{0\}$
(d) None of the above
15. Let $f(x)=\frac{\sin ^{-1} x}{x}$. Then, $\operatorname{Dom}(f)=$?
(a) $]-1,1[$
(b) $]-1,1[-\{0\}$
(c) $[-1,1]-\{0\}$
(d) None of these
16. If $\mathrm{F}(x)=\frac{x-1}{x+1}$, then $\mathrm{F}(2 x)$ is
(a) $\frac{\mathrm{F}(x)+1}{\mathrm{~F}(x)+3}$
(b) $\frac{3 \mathrm{~F}(x)+1}{\mathrm{~F}(x)+3}$
(c) $\frac{\mathrm{F}(x)+3}{\mathrm{~F}(x)+1}$
(d) $\frac{\mathrm{F}(x)+3}{3 \mathrm{~F}(x)+1}$
17. If $f(x)=\cos \left(\log _{e} x\right)$, then $f(x) \cdot f(y)-\frac{1}{2}[f(x / y)+f(x y)]$ is equal to
(a) 0
(b) $\frac{1}{2} f(x) \cdot f(y)$
(c) $f(x+y)$
(d) None of these
18. Let $g(x)=\sin x+\cos x$. Then Range (g) is equal to
(a) $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$
(b) $]-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}[$
(c) $[-\sqrt{2}, \sqrt{2}]$
(d) $]-\sqrt{2}, \sqrt{2}[$
19. Which of the following function from Z to itself is bijection?
(a) $f(x)=x^{3}$
(b) $f(x)=x+2$
(c) $f(x)=2 x+1$
(d) $f(x)=x^{2}+x$
20. Let $f: \mathrm{N} \rightarrow \mathrm{N}$ is defined by $f(n)=n^{2}+n+1$. Then f is
(a) one-one, onto
(b) one-one, into
(c) many-one onto
(d) many-one, into
21. Let A and B be two sets such that A be the empty set and B has m elements, then the total number of mappings from A to B is
(a) m
(b) 0
(c) 1
(d) None of these
22. Let $\mathrm{A}=\{x \in \mathrm{R}: x \leq 1\}$ and $f: \mathrm{A} \rightarrow \mathrm{A}$ be defined as $f(x)=x(2-x)$, then $f^{-1}(x)$ is
(a) $1+\sqrt{1-x}$
(b) $1-\sqrt{1-x}$
(c) $\sqrt{1-x}$
(d) $1 \pm \sqrt{1-x}$
23. If $f\left(x_{1}\right)-f\left(x_{2}\right)=f\left(\frac{x_{1}-x_{2}}{1-x_{1} x_{2}}\right)$ for $x_{1}, x_{2} \in(-1,1)$, then what is $f(x)$ equal to?
[NDA-I 2016]
(a) $\ln \left(\frac{1-x}{1+x}\right)$
(b) $\ln \left(\frac{2+x}{1-x}\right)$
(c) $\tan ^{-1}\left(\frac{1-x}{1+x}\right)$
(d) $\tan ^{-1}\left(\frac{1+x}{1-x}\right)$
24. Let $f(x)$ be the greatest integer function and $g(x)$ be the modulus function. What is $(f \circ f)\left(-\frac{9}{5}\right)+(g \circ g)(-2)$ equal to?
[NDA-I 2016]
(a) -1
(b) 0
(c) 1
(d) 2
25. What is the domain of the function $f(x)=\frac{1}{\sqrt{|x|-x}}$?
[NDA-II 2016]
(a) $(-\infty, 0)$
(b) $(0, \infty)$
(c) $0<x<1$
(d) $x>1$
26. What is the range of the function $y=\frac{x^{2}}{1+x^{2}}$?
[NDA-I 2017]
(a) $[01)$
(b) $\left[\begin{array}{ll}0 & 1\end{array}\right]$
(c) (01)
(d) $(01]$
27. If $f(x)=\frac{x}{x-1}$, then what is $\frac{f(a)}{f(a+1)}$ equal to ?
[NDA-I 2017]
(a) $f\left(\frac{-a}{q+1}\right)$
(c) $f\left(\frac{1}{a}\right)$
(b) $f\left(a^{2}\right)$
(d) $f(-a)$
28. The function $f: \mathrm{X} \rightarrow \mathrm{Y}$ defined by $f(x)=\cos x$, where x $\in X$, is one-one and onto then X and Y are respectively equal to
[NDA-I 2017]
(a) $[0, \pi]$ and $[-1,1]$
(b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $[-1,1]$
(c) $[0, \pi]$ and $(-1,1)$
(d) $[0, \pi]$ and $[0,1]$
29. Let $f:[-6,6] \rightarrow \mathrm{R}$ be defined by $f(x)=x^{2}-3$. Consider the following

1. $(f \circ f \circ f)(-1)=(f \circ f \circ f)(1)$
2. $(f \circ f o f)(-1)=4($ fofo $f)(1)=($ fof $)(0)$

Which of the above is/are correct?
[NDA-I 2017]
(a) Only 1
(b) Only 2
(c) Both 1 and 2
(d) Neither 1 nor 2
30. Let $f(x)= \begin{cases}x, & x \text { is rational } \\ 0, & x \text { is irrational }\end{cases}$ and $g(x)= \begin{cases}0, & x \text { is rational } \\ x, & x \text { is irrational }\end{cases}$
If $f: \mathrm{R} \rightarrow \mathrm{R}$ and $g: \mathrm{R} \rightarrow \mathrm{R}$ then $f-g$ is [NDA-I 2017]
(a) one-one and into
(b) neither one-one nor onto
(c) many-one and onto
(d) one-one and onto

ANSWERS

1.	(d)	2.	(c)	3.	(a)	4.	(a)	5.	(d)	$\mathbf{6 .}$	(d)	7.	(a)	8.	(c)	9.	(c)	10.	(b)
11.	(d)	12.	(d)	13.	(a)	14.	(c)	15.	(c)	16.	(b)	17.	(a)	18.	(c)	19.	(b)	20.	(b)
21.	(c)	22.	(b)	23.	(a)	24.	(b)	25.	(a)	26.	(a)	27.	(b)	28.	(a)	29.	(a)	30.	(d)

Explanations

1. (d) $\mathrm{A}=\{1,2,3,4\}$
$f_{1}=\{(1,2),(2,3)(3,4),(4,5)\}$
$f_{2}=\{(1,4),(2,3),(2,4),(3,3),(3,4)$,

$$
(4,4),(4,1),(4,2),(4,3)\}
$$

$f_{3}=\{(2,1)(3,1)(3,2) \ldots\}$
and $f_{4}=\{(1,4)(2,3)(3,2)(4,1)\}$
Obviously f_{4} is a function from A to itself and f_{1}, f_{2}, f_{3} are not the function from A to itself.
2. (c) $n(\mathrm{~A})=3$ and $n(\mathrm{~B})=4$

Number of injections from A to $\mathrm{B}={ }^{4} \mathrm{P}_{3}=24$
3. (a) Let $f(x)=y$, then
$\frac{3 x+2}{5 x-3}=y \Rightarrow x=\frac{3 y+2}{5 y-3}$
$\therefore f^{-1}(y)=\frac{3 y+2}{5 y-3}$
or $f^{-1}(x)=\frac{3 x+2}{5 x-3}=f(x) \forall x$
4. (a) $f(x)=\frac{1}{\sqrt{2 x-1}}-\sqrt{1-x^{2}}$

Let $f(x)=g(x)-h(x)$, where $g(x)=\frac{1}{\sqrt{2 x-1}}$
and $h(x)=\sqrt{1-x^{2}}$
$g(x)$ is defined when $2 x-1>0$, i.e., $x>\frac{1}{2}$
$\therefore \operatorname{dom}(g)=] \frac{1}{2}, \infty[$
$h(x)$ is defined when $1-x^{2} \geq 0$
$\Rightarrow x^{2} \leq 1$
$\Rightarrow-1 \leq x \leq 1 \Rightarrow \operatorname{Dom}(h)=[-1,1]$
\therefore Domain of the given function is] $\left.\frac{1}{2}, 1\right]$.
5. (d) Clearly $f(x)$ is defined when $\log \left(2 x-x^{2}\right) \geq 0$
i.e., when $\left(2 x-x^{2}\right) \geq 1$
i.e., when $1+x^{2}-2 x \leq 0$
$(1-x)^{2} \leq 0$

This happen only when $1-x=0$
i.e., $x=1$
$\therefore \operatorname{dom}(f)=\{1\}$
6. (d) $(3+4 i)$ and $(3-4 i)$ are two different complex numbers having the same modulus, i.e.,
$f(3+4 i)=f(3-4 i)$ so, two different elements have the same image.
$\therefore f$ is many one.
$-1 \in \mathrm{R}$ have no pre-image in C .
Hence, f is many one into.
7. (a) $\mathrm{A}=\{x:-1 \leq x \leq 1, x \in \mathrm{I}\}$
then $\mathrm{A}=\{-1,0,1\}$
$f(x)=x|x|$
$f(-1)=-1$
$f(0)=0$
$f(1)=1$
$\Rightarrow f$ is one one onto, i.e., f is bijection.
8. (c) $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}$

Let $x+\frac{1}{x}=z$
Making square on both sides
$\left(x+\frac{1}{x}\right)^{2}=z^{2} \Rightarrow x^{2}+\frac{1}{x^{2}}=z^{2}-2$
Put in (1) $f(z)=z^{2}-2$
$\Rightarrow f(x)=x^{2}-2$
9. (c) $f: \mathrm{N} \rightarrow \mathrm{A}$ where $\mathrm{A}=\{0,1\}$
$\because f(2 n-1)=0$ and $f(2 n)=1 \forall n \in \mathrm{~N}$
i.e., All odd numbers are mapped to 0 and all even numbers are mapped to 1 , so function is many one onto.
10. (b) $f(x)=\log \left(\frac{1+x}{1-x}\right)$ and $g(x)=\frac{3 x+x^{3}}{1+3 x^{2}}$
$f \circ g(x)=f\{g(x)\}$
$=f\left\{\frac{3 x+x^{3}}{1+3 x^{2}}\right\}=\log \left\{\frac{1+\frac{3 x+x^{3}}{1+3 x^{2}}}{1-\frac{3 x+x^{3}}{1+3 x^{2}}}\right\}$
$=\log \left\{\frac{1+3 x+3 x^{2}+x^{3}}{1-3 x+3 x^{2}-x^{3}}\right\}=\log \left(\frac{1+x}{1-x}\right)^{3}$
$=3 \log \left(\frac{1+x}{1-x}\right)=3 f(x)$
11. (d) $f(x)=2 x-3, g(x)=x^{3}+5$
$f \circ g(x)=f\{g(x)\}=f\left\{x^{3}+5\right\}$
$f \circ g(x)=2\left(x^{3}+5\right)-3=2 x^{3}+7$
Let $f o g(x)=y$
$\Rightarrow y=2 x^{3}+7$
or $x=\left(\frac{y-7}{2}\right)^{1 / 3}$
So, $(f \circ g)^{-1}(x)=\left(\frac{x-7}{2}\right)^{1 / 3}$
12. (d) An injective function means one-one

In option (d),
$f(x)=-x$
For every value of x, we get a different value of f.
Hence, it is injective.
13. (a) $f: \mathrm{N} \rightarrow \mathrm{N}$
s.t. $f(n)=n-(-1)^{n}$
$f(1)=1+1=2, f(2)=2-1=1$
$f(3)=3+1=4, f(4)=4-1=3$
i.e., $f(n)=\left\{\begin{array}{lc}n+1 ; & n \text { is odd } \\ n-1 ; & n \text { is even }\end{array}\right.$

Clearly, function is one-one onto.
14. (c) Let $f(x)=g(x)+h(x)$, where
$g(x)=\frac{1}{\log _{10}(x-1)}$
and $h(x)=\sqrt{x+2}$
$g(x)$ is defined only when $\log _{10}(1-x) \neq 0$
and $(1-x)>0$
i.e., when $x \neq 0$ and $x<1$
$\operatorname{Dom}(g)=]-\infty, 1[-\{0\}$
$h(x)$ is defined only when $x+2 \geq 0$
i.e., when $x \geq-2$
$\therefore \operatorname{dom}(h)=[-2, \infty[$
$\operatorname{Dom}(f)=\operatorname{Dom}(g) \cap \operatorname{Dom}(h)$
$=(]-\infty, 1[-\{0\} \cap([-2, \infty[)=[-2,1[-\{0\}$
15. (c) $\frac{\sin ^{-1} x}{x}$ is defined only when $x \neq 0$ and $x \in[-1,1]$
$\therefore \operatorname{dom}(f)=[-1,1]-\{0\}$
16. (b) $\frac{F(x)}{1}=\frac{x-1}{x+1} \Rightarrow \frac{F(x)+1}{F(x)-1}=\frac{2 x}{-2}$
\{Applying Componendo Dividendo Theorem \}
$\therefore \mathrm{F}(2 x)=\frac{2 x-1}{2 x+1}=\frac{2\left[\frac{F(x)+1}{1-F(x)}\right]-1}{2\left[\frac{F(x)+1}{1-F(x)}\right]+1}$
$=\frac{3 F(x)+1}{F(x)+3}$
17. (a) $f(x)=\cos \left(\log _{e} x\right)$
$f(x) \cdot f(y)-\frac{1}{2}\left[f\left(\frac{x}{y}\right)+f(x y)\right]$
$=\cos (\log x) \cos (\log y)$

$$
-\frac{1}{2}\left[\cos \left(\log \frac{x}{y}\right)+\cos (\log x y)\right]
$$

$=\cos (\log x) \cos (\log y)$

$$
-\frac{1}{2}[\cos (\log x-\log y)+\cos (\log x+\log y)]
$$

$=\cos (\log x) \cos (\log y)$
$=0 \quad-\frac{1}{2}[2 \cos (\log x) \cos (\log y)]$
18. (c) $g(x)=\cos x+\sin x=\sqrt{2}\left[\frac{1}{\sqrt{2}} \cos x+\frac{1}{\sqrt{2}} \sin x\right]$
$=\sqrt{2} \sin \left(x+\frac{\pi}{4}\right)$
$\Rightarrow-\sqrt{2} \leq g(x) \leq \sqrt{2} \quad\left\{\because-1 \leq \sin \left(\frac{\pi}{4}\right) \leq 1\right\}$
Hence, Range $=[-\sqrt{2}, \sqrt{2}]$
19. (b) The function $f(x)=x^{3}$ is not a surjection from Z to itself because $2 \in \mathrm{Z}$ does not have any pre image in Z .
The function $f(x)=x+2$ is a bijection from Z to itself.
The function $f(x)=2 x+1$ is not a surjection from Z to itself and the function $f(x)=x^{2}+x$ is not an injection from Z to itself.
20. (b) $f: \mathrm{N} \rightarrow \mathrm{N}: f(n)=n^{2}+n+1$
$f\left(n_{1}\right)=f\left(n_{2}\right)$
$\Rightarrow n_{1}^{2}+n_{1}+1=n_{2}^{2}+n_{2}+1$
$\Rightarrow\left(n_{1}-n_{2}\right)\left(n_{1}+n_{2}+1\right)=0$
$\Rightarrow\left(n_{1}-n_{2}\right)=0 \quad\left(\because n_{1}+n_{2}+1 \neq 0\right)$
$\Rightarrow n_{1}=n_{2}$
$\Rightarrow f$ is one-one.

Let $n^{2}+n+1=1$ for some $n \in \mathbf{N}$
Then, $n(n+1)=0$
$\Rightarrow n=-1 \notin \mathrm{~N}$
$\Rightarrow 1$ is not the image of any natural number
$\Rightarrow f$ is into.
21. (c) Given $|\mathrm{A}|=0$ and $|\mathrm{B}|=m$
$f: \mathrm{A} \rightarrow \mathrm{B}$
Total number of mappings from A to $\mathrm{B}=m^{\circ}=1$
22. (b) Let $f(x)=y$
$\Rightarrow y=2 x-x^{2}$
or $x^{2}-2 x+y=0$
$\Rightarrow x=\frac{2 \pm \sqrt{4-4 y}}{2}$
$f^{-1}(y)=x=1 \pm \sqrt{1-y}$
$\because \mathrm{A}=\{x \in \mathrm{R}: x \leq 1\}$
So, $f^{-1}(x)=1-\sqrt{1-x}$
23. (a) Let $f(x)=\log \left(\frac{1-x}{1+x}\right)$
$f\left(\frac{x_{1}-x_{2}}{1-x_{1} x_{2}}\right)=\log \left\{\frac{1-\frac{x_{1}-x_{2}}{1-x_{1} x_{2}}}{1+\frac{x_{1}-x_{2}}{1-x_{1} x_{2}}}\right\}$
$=\log \left\{\frac{1-x_{1} x_{2}-x_{1}+x_{2}}{1-x_{1} x_{2}+x_{1}-x_{2}}\right\}$
$=\log \left\{\frac{\left(1-x_{1}\right)\left(1+x_{2}\right)}{\left(1+x_{1}\right)\left(1-x_{2}\right)}\right\}$
$=\log \left\{\frac{1-x_{1}}{1+x_{1}}\right\}+\log \left\{\frac{1+x_{2}}{1-x_{2}}\right\}$
$=\log \left\{\frac{1-x_{1}}{1+x_{2}}\right\}-\log \left\{\frac{1-x_{2}}{1+x_{2}}\right\}$
$=f\left(x_{1}\right)-f\left(x_{2}\right)$
24. (b) $f(x)=[x]$ and $g(x)=|x|$
$(f \circ f)\left(\frac{-9}{5}\right)+(\operatorname{gog})(-2)$
$=f\left\{f\left(-\frac{9}{5}\right)\right\}+g\{g(-2)\}$
$=f\left\{\left[-\frac{9}{5}\right]\right\}+g\{|-2|\}$
$=f(-2)+g(2)$
$=[-2]+|2|=-2+2=0$
25. (a) $f(x)=\frac{1}{\sqrt{|x|-x}}$

For domain $|x|-x>0$
$\Rightarrow|x|>x$
This is true for all negative values of x.
Hence, domain $=(-\infty, 0)$
26. (a) Let $f(x)=y=\frac{x^{2}}{1+x^{2}}$
$\Rightarrow x^{2}=\frac{y}{1-y} \Rightarrow x=\sqrt{\frac{y}{1-y}}=f^{-1}(y)$
For range $\frac{y}{1-y} \geq 0 \Rightarrow \frac{y}{y-1} \leq 0$
$\Rightarrow 0 \leq y<1$
Hence, range $=\left[\begin{array}{ll}0 & 1\end{array}\right)$
27. (b) $f(x)=\frac{x}{x-1}$
$\frac{f(a)}{f(a+1)}=\frac{\frac{a}{a-1}}{\frac{a+1}{a+1-1}}=\frac{a^{2}}{a^{2}-1}=f\left(a^{2}\right)$
28. (a) $f: \mathrm{X} \rightarrow \mathrm{Y}$ s.t. $f(x)=\cos x$ is one-one onto. $\cos x$ is one-one for $0 \leq x \leq \pi$ and onto when $-1 \leq \cos x \leq 1$ So, $\mathrm{X}=[0 \pi]$ and $\mathrm{Y}=\left[\begin{array}{ll}-1 & 1\end{array}\right]$
29. (a) $f:[-66] \rightarrow$ R s.t. $f(x)=x^{2}-3$ $\because f(1)=(f-1)$
so, $($ fofof $)(-1)=(f \circ f o f)(1)$
Hence, only Statement 1 is correct.
30. (d) $f(x)-g(x)=\left\{\begin{array}{cc}x, & x \text { is rational. } \\ -x, & x \text { is irrational. }\end{array}\right.$
$\Rightarrow f-g$ is one-one, onto.

